<u>Peak area determination proficiency test</u> <u>for the "Reference Database for Neutron</u> <u>Activation Analysis" CRP of the IAEA</u>

Reactor Institute Delft

Menno Blaauw

May 7, 2007

Faculty of Applied Sciences Reactor Institute Delft Facilities & Services

Delft University of Technology

Overview

- Introduction
- How it was done in 1995
- How it was done in 2006/7
- Results
- Discussion / conclusions

Introduction

- Peak area determination is at the root of all INAA: No good INAA can be done without good peak areas
- INAA has the special ability to estimate its own reproducibility from a single measurement –to do this properly means to determine good peak areas as well as good uncertainties
- Both aspects were therefore tested in the proficiency test

How it was done in 1995

- ²²⁶Ra spectrum acquired many, many times
- Individual spectra inspected
- 20 spectra added to create reference spectrum
- Other spectra shifted and added to create spectra with well known doublet area ratios
- Two independent analysis runs performed on reference spectrum, to get reference peak areas
- Software written to match tested software output to reference list of peaks, and calculate u-scores of various kinds

Faculty of Applied Sciences Reactor Institute Delft Facilities & Services

How it was done in 2006/2007

- ¹⁵²Eu spectrum acquired twice (14 minutes, 280 minutes)
- Individual spectra inspected
- Two not-so independent analysis runs performed on reference spectrum, to get reference peak areas
- 1995 Software reused to match tested software output to reference list of peaks, and calculate u-scores of various kinds

Faculty of Applied Sciences Reactor Institute Delft Facilities & Services

Results / preliminary info

Program	Participant	Name	Remarks by participant(s)
GAMANAL	María Arribére	arri	
Hypermet PC 5.01	Alessandro Borella	bor1	DT unknown
Hypermet PC 5.01	Borella and Blaauw	bor2	E-cal improved, DT unknown
Hyperlab 2002.3	Frans De Corte	corte1	
Hypermet PC 5.0	Frans De Corte	corte2	
k0-IAEA	Radojko Jacimovic	jacko1	
Hyperlab 2002.3	Radojko Jacimovic	jacko2	
Unknown	Sunday Jonah	Jonah	No DT correction
Hypermet PC	Zsolt Revay	revay	DT applied
k0-IAEA	Petra Rogan	rogan	

May 7, 2007

Faculty of Applied Sciences Reactor Institute Delft Facilities & Services

Results / example output

	E		A		E		A		Z-scores	
	val	unc	val	unc	val	unc	val	unc	rep	ref
*	37.6	0.5	291	54	37.6	0.5	0	261		0.0
*	43.2	0.1	359	50	43.2	0.1	0	244		0.0
*	44.1	0.5	480	57	44.1	0.5	0	276		0.0
*	44.7	0.2	86	26	44.7	0.2	0	127		0.0
*	55.5	0.0	31	15	55.5	0.0	0	71		0.0
*	65.2	0.0	4160	227	65.2	0.0	0	1100		0.0
*	67.1	0.0	8032	377	67.1	0.0	0	1827		0.0
*	76.3	0.0	3686	115	76.3	0.0	0	560		0.0
*	78.6	0.0	1035	50	78.6	0.0	0	242		0.0
*	96.8	0.1	36	19	96.8	0.1	0	93		0.0
	120.6	0.0	34597	179	120.8	0.7	34986	557	0.7	0.5
*	129.9	0.0	13	20	129.9	0.0	0	97		0.0
*	136.5	0.0	53	16	136.5	0.0	0	77		0.0

May 7, 2007

Results / example output

'TRUE' DATA COMBIREF.TXT				MEASURED DATA ARRI.TXT				 		
-	Е		A		 E		A		Z-scores	
	val	unc	val	unc	val	unc	val	unc	rep	ref
-	1407.6	5.4	 21996	55	 1407.7	0.6	 21985	250	-0.0	-0.0
	1434.0	0.0	979	52	1434.0	0.0	0	255		-4.1
	1457.7	0.0	1089	55	1457.7	0.0	0	265		-4.4
	1476.0	3.1	587	16	1476.0	3.1	0	76		-8.2
*	1486.0	0.1	190	22	1486.0	0.1	0	106		0.0
*	1488.4	0.3	41	10	1488.4	0.3	0	49		0.0
	1528.8	6.2	3747	45	1528.8	6.2	0	220		-18.0
*	1549.8	0.0	10	8	1549.8	0.0	0	40		0.0
*	1558.0	0.0	15	8	1558.0	0.0	0	39		0.0
	1579.6	0.1	163	33	1579.6	0.1	0	160		-1.1
	1596.6	0.3	53	60	1596.6	0.3	0	293		-0.2
	1643.6	0.0	712	31	1643.6	0.0	0	149		-5.1
	1649.9	0.1	124	16	1649.9	0.1	0	77		-1.7
*	1682.9	0.0	0	7	1682.9	0.0	0	35		0.0
*	1686.6	0.0	9	7	1686.6	0.0	0	34		0.0
	1719.5	0.4	35	35	1719.5	0.4	0	168		-0.2
	1785.9	7.9	16623	61	1785.9	7.9	0	294		-59.8
*	1853.6	0.2	104	19	1853.6	0.2	0	91		0.0

May 7, 2007

Results / example output

```
COMPARISON RESULTS FOR COMBIREF.TXT AND ARRI.TXT
TRUE MATCHES
    Number of matches for high peaks: 12
      related chisgr for areas and reported uncertainty: 0.5 *
      and for reported areas with reference uncertainty: 0.3 *
    Number of matches for small peaks on high continuum: 22
     related chisgr for areas and reported uncertainty: 0.2 *
     and for reported areas with reference uncertainty: 0.1 *
    Number of matches for small peaks on low continuum: 0
  Number of non-511 matches all together: 34
    related chisqr for areas and reported uncertainty: 0.3 *
   and for reported areas with reference uncertainty: 0.2 *
   and the chisqr for their positions:
                                          0.1 *
FITTING THE 511 keV PEAK
  Number of peaks found there: 1
    related chisqr:
                                       0.7
MISSES AND FALSE HITS
  Number of misses: 44
    related chisgr:
                                      101.1 *
 Number of false hits: 0
TOTALS
  Number of considered peaks (ex 511): 78
   related chisqr for areas:
                                      57.9 *
CONSTANTS USED:
  Second spectrum was counted 20.0 times shorter than the first.
  Threshold energy: 100.00 keV.
  Criteria for energy matching:
     E1 - E2 < 2 * sqrt(sqr(dE1) + sqr(dE2)) or
              < 0.5 * FWHM(E1).
 Criterion for high significance: A/ref_err > 10.
 Criterion for high continuum: 3.0 * net < gross.
  Criterion for annihilaton peak: |E - 511| < 3.0.
```

May 7, 2007

Faculty of Applied Sciences Reactor Institute Delft Facilities & Services

TUDelft

May 7, 2007

May 7, 2007

May 7, 2007

Discussion / conclusions

• Up to you!

May 7, 2007

